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Hierarchical approach for computing spin glass ground states
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We describe a numerical algorithm for computing spin glass ground states with a high level of reliability.
The proposed method uses a population based search and applies optimization on multiple scales. Benchmarks
are given leading to estimates of the performance on large lattices.
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I. INTRODUCTION

Discrete optimization plays a central role in many en
neering problems, such as, scheduling and electronic cir
design, but it is also important in fundamental science. O
major open problem there concerns the nature of the en
landscape of optimization problems with quenched disord
It is generally agreed that these energy landscapes are
ged, but are they self-similar as predicted by the sca
theories of spin glasses@1,2#? Despite many years of contro
versy, this issue is still unsettled. In order to make progre
it is useful to be able to compute the ground states of th
disordered systems@3#. Indeed, by applying a sensitivit
analysis, that is by considering how a ground state chan
when the parameters specifying the optimization probl
vary, one can probe the energy landscape and measu
scaling exponents. For some types of optimization proble
finding ground states can be achieved with algorithms wh
CPU time grows polynomially with the size of problem~the
size is the number of discrete variables in the proble!.
However, in many other interesting cases, finding the gro
state is an NP-hard problem soefficientalgorithms are par-
ticularly called for. In this work, we present a method f
computing ground states heuristically; even though our a
rithm is not guaranteed to provide the optimum as its outp
the ground states can be found for significantly larger s
tems than with methods having such a guarantee. For
stance, the ground state of a 10310310 Edwards-Anderson
spin glass can be computed in a few minutes on a pers
computer, while 13313313 lattices can be solved on larg
computers. Results using exact methods, such as, branch
bound have been published@4#, but only for much smaller
sizes (43434).

In the following section, we give the general framewo
in which we work. Section III introduces the main features
our algorithm that embeds both a local search and renorm
ization into a genetic algorithm; then Sec. IV describes
over-all algorithm architecture. Finally, in Sec. V, we e
plain how the algorithm behaves in practice on benchm
problems.

II. GRAPHS AND HAMILTONIANS

We consider an Ising spin glass, defined on an arbitr
nonoriented graphG; the Hamiltonian or energy function w
seek to minimize is
1063-651X/2001/64~5!/056704~7!/$20.00 64 0567
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H52 (
$ i , j %PE

Ji j SiSj2(
i PV

hiSi . ~1!

The ‘‘spins’’ Si are of the Ising type,Si561, and lie on the
vertices or ‘‘sites’’ ofG. N is thesizeof our system, that is,
the number of these vertices.E is the set of edges ofG; each
edge connects two vertices. Finally, theJi j and thehi can be
any real numbers; theJi j lie on the edges ofG while thehi
lie on its vertices. From here on, we call aninstancethe
specification of all the parameters of the Hamiltonian, that
the specification of the graphG and of all the parametersJi j
andhi . Similarly, we call a~spin! configurationthe assign-
ment of the values of theSi ~for all i, 1< i<N).

The Hamiltonian in Eq.~1! can be used to represent a
arbitrary spin glass, be it on a lattice, such as, the Edwa
Anderson~EA! model @5#, or on a random graph as for d
luted mean-field spin glasses. It can also be used to repre
a random-field Ising model~RFIM! with or without disorder
in the bond strengths. The algorithm we present in this w
does not take advantage of any structure inG or in the pa-
rameters defining the Hamiltonian; owing to this, it cann
be expected to be competitive in the special cases wh
finding the ground state is a polynomial problem.~Note that
two-dimensional spin glasses and the RFIM fall into th
class.! Nevertheless, in the other cases we have found
algorithm to be very effective. It is possible that improv
ments could be realized by taking advantage of additio
structure inH, but we shall not investigate that issue here

III. COMPONENTS OF THE ALGORITHM

The algorithm we present is a genetic algorithm: w
evolve a population of configurations from one generation
the next. The key elements of our approach are~i! the use of
an embedded local search;~ii ! the incorporation of a renor
malization procedure among parents in the population
allows one to consider multiple length scales; and~iii ! the
use of recursion. Due to these features, we talk of a ‘‘Gen
Renormalization Algorithm’’~GRA!.

A previous GRA algorithm was described in Ref.@6#. For
the readers aware of that work, our present approach h
different structure for the recursive calls, leading to an ex
nential speed up inN compared to the older method. Befo
describing our proposed algorithm, we first go over its m
components.
©2001 The American Physical Society04-1
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A. Local search

Let us first define a few terms. Consider a configurat
and one of its spinsSi . We callgain of that spin the decreas
in the configuration’s energy whenSi is flipped.~The gain is
thus minus the change in the total energy.! A spin is said
stable~resp.unstable! if its gain is negative~resp. positive!.
SpinSi is said to be more unstable than spinSj if gain of Si

is greater than the gain ofSj .
It is straightforward to extend these single spin definitio

to setsof spins. We shall focus on the case of clusters
clusteris a set of spins~vertices! that is connected~using the
edges ofG!. Then, extending the previous definitions, t
gain of a cluster is just minus the change of the total ene
when all the spins of the cluster are flipped. Similarly,
cluster can be stable or unstable, etc.

A local search is a procedure that attempts at lowering
energy of a configuration by repeatedly changing a few v
ables at a time, accepting only improving changes. For
system, this amounts to flipping sets of spins with posit
gain until no more favorable sets are found. Local sea
covers many different methods, because there is much f
dom in the way one searches for and selects these sets
method we have developped for our GRA is inspired fro
the Kernighan-Lin@7# algorithm. In that class of local searc
algorithms, the number of variables that is changed at a t
is not set before hand and, in practice can be quite large.
our local search, we force the set of spins that will be flipp
to be connected, that is we restrict ourselves to clusters
deed, if there is a set of spins with positive gain, at least
connected component of that set has a positive gain.

Our search for a ‘‘good’’ cluster proceeds as follow
First we choose a starting spin; it defines the initial clus
Second, we successively add new and promising spins to
current cluster, maintaining the connectivity property. D
ing this growth process, the gain of the cluster can go p
tive or negative, up or down. Third, we stop growing t
cluster when things no longer look promising. Finally, w
consider all the gains generated during the cluster’s gro
and select the largest one. If that gain is strictly positive,
flip the corresponding cluster, generating an improved c
figuration. These steps correspond to one pass of the l
search. We perform multiple passes until the search for
improving cluster fails; then a local minimum ofH has been
reached and the local search is finished.

Naturally, the description we have given of our loc
search is rather schematic; one has to implement in the c
how to choose the starting spin, what is a promising sp
etc. The reader interested in these details will find them
Appendix A. Other types of local searches could be u
instead; our choice is motivated by a trade off between sp
and quality.

B. Renormalization

Given a spin glass Hamiltonian forN spins and at leas
two spin configurations, there is a natural definition of
block spin; from that, one can extract an exact renormali
spin glass Hamiltonian associated with a system having
generalN8,N spins. Such a renormalization procedure w
05670
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first proposed by Kawashima and Suzuki@8#; to keep this
paper self-contained, we describe this method again.

Let Eq.~1! be the Hamiltonian of the system andG be the
associated graph. Suppose we havek spin configurations
$Si

(1)%, $Si
(2)%, . . . ,$Si

(k)%. We then define thesignatureat
site i to be the following vector of61 values:

sW i5~Si
(1)Si

(2) ,Si
(1)Si

(3) , . . . ,Si
(1)Si

(k)!. ~2!

Two sitesi and j have the same signature if and only if th
spins at those sites have the samerelativeorientation~paral-
lel or antiparallel! in all of the k configurations. Now we
partition the sites ofG according to their signature. Furthe
more, given a set of sites of identical signature, we furt
subdivide this set into clusters~i.e., the desired subsets a
the connected components of that set, where as usual
nectivity is defined using the edges ofG). Thus to each site
i corresponds a maximal connected clusterA( i ) of sites; then
for any sitej

A~ j !5A~ i !⇒sW j5sW i . ~3!

For each clusterA, we introduce the ‘‘block-spin’’SA to be
11 if all the spins inA are parallel to those of the firs
configuration, and21 if they are all antiparallel. Thus fo
configuration 1 we haveSA51 for all A while for the nth
configuration (1<n<k) we have

SA
(n)5Si

(1)Si
(n) for anyi PA. ~4!

as can be seen from Eqs.~2! and ~3!.
The exact Hamiltonian for these block spins is of the fo

H8@$SA%#52 (
(A,B)PE8

JABSASB2 (
APV8

hASA , ~5!

whereV8 is the set ofA clusters andE8 is the set of edges o
the corresponding ‘‘renormalized’’ graphG8. Note that two
blocked spinsSA andSB are neighbors inG8 if at least one
spin of clusterA is a neighbor~according toG) of at least
one spin of clusterB. A simple computation gives the cou
plings between the block spins

JAB5(
i PA

(
j PB

Ji j Si
(1)Sj

(1) . ~6!

Similarly, the fields are

hA5(
i PA

hiSi
(1) . ~7!

Thus we have

H@Si
a#5H8@SA

a#1Hc , ~8!

where Hc is a constant representing the interaction ene
inside the clusters

Hc52 (
APV8

(
i , j PA

Ji j Si
(1)Sj

(1) . ~9!
4-2
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HIERARCHICAL APPROACH FOR COMPUTING SPIN . . . PHYSICAL REVIEW E64 056704
In Fig. 1 we give an illustration of the construction of th
clusters~block spins! generated by the renormalization whe
using three configurations.~In this example,G is a 434
lattice.!

The renormalization procedure can be reversed in
sense that if you have a spin configuration forH8 you can
recover the corresponding one forH using Eq.~4! ~provided
you rememberSi

(1) and the definition of the clusters!. We
will call this operation theraising of a configuration.

The idea is then as follows. If you have a set of config
rations forH, you first use the renormalization procedure
produce configurations$SA

(n)% associated with a smaller num
ber of spins~these are the block spins!. Second, you improve
these configurations by a suitable optimization procedu
Finally, you raise these improved configurations, obtain
new configurations for the initial Hamiltonian but with lowe
energies than previously.

C. Population evolution

The main problem encountered when searching for
ground state via local search is that asymptotically one h
fixed percentage error on the~extensive! ground state energy
and so the probability of reaching the ground state goe
zero exponentially withN. To postpone this bad behavio
one could improve the local search but that is computati
ally costly. Furthermore, in spin glasses~as in most difficult
optimization problems!, low energy configurations may dif
fer from the ground state by a ‘‘large’’ number of spins,
fact a number growing linearly withN. ~This is expected to
happen when the overlap probability distributionP(q) is
broad, signaling replica symmetry breaking@9#!. When this
happens, improvements in the local search algorithm
doomed to be ineffective. So instead we appeal to renorm
ization in order to optimize on larger length scales while s
using thesamelocal search. As a bonus, one may be able
perform optimization on all scales if the renormalization
done recursively.

FIG. 1. Example of a renormalization withN516 andk53 for
nearest neighbor interactions. If the interactions had been
range, the top left and the bottom right clusters would be mer
since they would form a connected set of sites with the same
nature.
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Using the local search and the renormalization toget
requires working with apopulation of configurations. Our
method is thus a generalized genetic algorithm; we evolv
population of configurations whose energies we try to mi
mize. To do this, we repeatedly choose subsets of the po
lation ~the parents! to which we apply the renormalizatio
procedure. For each such subset, we then obtain a sm
spin glass instance and a corresponding set of configurati
We optimize~see the following section! these configurations
and deduce new configurations for the original Hamilton
~the children! that have a lower energy than their paren
When all the parents have produced enough children,
parents are replaced by the children, giving rise to a n
generation. When no further improvements are possible,
algorithm stops.

One of the essential features of our approach is that
impose the children to be better than their parents. Let
define this notion mathematically as follows. We say tha
populationP8 is more optimizedthan a populationP if there
is a mappingf from P to P8 such that.~i! f is onto, i.e., the
mapping ofP covers all ofP8; and ~ii ! f (C)5C8⇒H(C8)
<H(C). Furthermore, we say thatP8 is strictly more opti-
mized thanP if f is not one-to-one or ifH(C).H„f (C)… for
at least oneC. These definitions introduce apartial ordering
relation on populations. According to this relation, you o
tain a strictly more optimized population in the followin
cases:~i! you remove the worst configuration~greatest en-
ergy!; ~ii ! you remove duplicated configurations;~iii ! you
improve at least one configuration; and~iv! you replace a
subpopulation by a strictly more optimized one. In our alg
rithm, duplicated configurations are removed, so all the c
figurations are different in any given population.

IV. ARCHITECTURE OF THE ALGORITHM

A. Recursion: The Next_Generation function

We can now discuss more precisely how the algorit
works and, in particular, how the children are produced us
a recursivecall to the renormalization procedure. The he
of this is a function that we call ‘‘Next_Generation.’’ W
first describe its main ingredients; details will be added la
in Appendix B. For its input, this function takes an instan
~i.e., a Hamiltonian! and a population of configuration
~hereafter called the old generation!. It outputs a new gen-
eration that is more optimized than the old one. This funct
proceeds as follows~see Fig. 2!.

~1! If the old generation contains only one configuratio
do nothing and return that configuration~the new generation
is the same as the old one!.

~2! Choosek configurations~or parents! at random in the
old generation. If possible choose different parents e
time.

~3! Apply the renormalization procedure to create a ren
malized instance together with a set ofk renormalized con-
figurations.

~4! Apply the local search to these renormalized config
rations.

~5! Call Next_Generation~recursively! on the renormal-
ized instance and the renormalized configurations. Raise

g
d
g-
4-3
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J. HOUDAYER AND OLIVIER C. MARTIN PHYSICAL REVIEW E64 056704
resulting configurations and apply local search to the
These configurations are the children.

~6! Add the children produced to the new generation.
~7! Return to step 2 until all the configurations from th

old generation have been used as parents at least once
~8! Return the new generation~all the children produced!.
The spirit of this function is roughly that each configur

tion from the old generation gives birth to a more optimiz
one in the new generation. This new configuration is ess
tially the old one optimized on many scales by the lo
search during the recursive calls. In the over-all genetic
gorithm ~see the following section!, this function is called
repeatedly; thus previous improvements can influence
ones to come.

B. Layout of the algorithm

At a high level of description, our algorithm computes
optimized configuration~hopefully the ground state! when it
is given an instance. Schematically, it proceeds by follow
these five steps.

~1! Randomly generateM configurations.
~2! Apply the local search to each one of them.
~3! Call the Next_Generation function.
~4! Return to step 3 until only one configuration is left.
~5! Output this last configuration that is the result.
There is still one detail that must be fixed. We want to

sure that the loop terminates, and thus we want each gen

FIG. 2. Inner steps of Next_Generation. The dots mean that
parent has already been used and thus should not be reus
possible. The steps are repeated until all configurations have
used as parents~i.e., have obtained a dot!.
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tion to bestrictly more optimized than the previous one. W
enforce this at the level of Next_Generation as explained
Appendix B. Given this last detail, the high-level descripti
of the algorithm is now complete; let us now go on and s
how well all this works in practice.

V. BEHAVIOR OF THE ALGORITHM

In the rest of this paper, we restrict ourselves to Edwar
Anderson~EA! spin glasses in dimensions 2, 3, and 4 w
periodic boundary conditions and nearest neighbor inte
tions. Furthermore, our couplings are Gaussian and ther
no magnetic field. Thus in Eq.~1!, hi50 and theJi j are
independent random variables having a normal distribut
of zero mean and variance equal to 1.~Generally speaking,
the algorithm has an easier time finding ground states w
there is a magnetic field, justifying our choice ofhi50.!

To give the reader some intuition about how the algorith
works, we can follow what happens when going from o
generation to the next; this is the object of the followin
section. In Sec. V B, we shall see just how powerful the
gorithm is by measuring the probability with which it find
the ground state.

A. Qualitative aspects

In our algorithm, there is only one free parameter: t
number M of configurations in the first generation of th
genetic algorithm.~The other parameters have been fix
once and for all in the code which thus becomes a ‘‘bla
box’’ routine.!

The choiceM51 is special as it prevents any renorma
ization; the algorithm then reduces to applying local sea
to a randomly generated configuration. How well does t
work? LetDE be the difference between the output ener
and the ground state energyE0. We find empirically thatDE
is self-averaging as the linear lattice sizeL goes tò . Quan-
titatively, the relative errorDE/E0 at largeL is 5.1% ind
52, 6.0% ind53, and 6.2% ind54. This may seem large
but it should be compared to the excesses of over 20%
tained when using single spin optimization~zero temperature
Metropolis!.

When M.1, the first thing the algorithm does is app
local search to the configurations; thus before calling N
_Generation, we have configurations with the previou
given excess energies. Then, as one goes from one ge
tion to the next, the mean energy of the population decrea
This is illustrated in Fig. 3 for a typical instance withL
512, d53, andM51000. We see that this decrease is in
tially quite rapid, while at the same time the population s
stays fixed at its initial valueM. For later generations, th
mean energy decreases more slowly whereas the popul
size decreases steadily. Finally, the population size reach
and the algorithm terminates; the last configuration is nec
sarily the best configuration found throughout the whole r
The pattern shown in the figure is typical and arises for
lattice sizes and dimensions we have investigated.

Naturally, the detailed evolution from generation to ge
eration does fluctuate from instance to instance. Never
less, we find that the generation number where the pop

e
, if
en
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tion begins to decrease is quite insensitive to the value oM
while it clearly grows for increasingL. Furthermore, in the
great majority of cases, we find that the final configurat
~which is the output! first appears right after the populatio
begins to decrease. Probably the most significant depend
on M concerns the total number of generations produced
fore termination. The fluctuations in that number are lar
than for other observables; also, the trend is towards m
generations asM→`. But even there the dependence is n
so dramatic; to give some illustrative numbers, consi
againL512 for d53. There are typically ten generations f
M5100; whenM increases, the number of generations
creases quite slowly, reaching about 20 forM510 000.

B. Probability of finding the ground state

To a large extent, the power of an optimization algorith
can be quantified by its probability of finding the groun
state and by the CPU time required to do so. For a fix
instance and a given numberM, there is a certain probability
p of finding the ground state~remember that our algorithm i
stochastic and thus depends on a random number gener!.
To measurep, one should know the ground state, but sin
that is not the case we proceed self-consistently. We cho
a largeM and we run the program many times; if the be
output~the putative ground state! is found with a high prob-
ability ~say 90%) we can reasonably expect that it is
ground state. Moreover we checked the program again
previous version that had been also tested against an e
algorithm @6#.

Once we ‘‘know’’ the ground state, we can measurep for
different values ofM. Empirically we find that for large
enoughM we have

p~M !'12e2M /a, ~10!

wherea is a number that depends on the actual instance. T

FIG. 3. The evolution with generation number of the mean
ergy ~diamonds and left axis! and of the population size~squares
and right axis!.
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kind of dependence onM can be motivated by a very simpl
argument. Let us callq512p, the probability of not finding
the ground state. If we run the programn times~with differ-
ent random numbers!, the probability of not finding the op-
timum n times is qn. If we now run the program with a
population of sizenM instead ofM, we should do at least a
well and thusq(nM)<q(M )n. But for largenM, the algo-
rithm is expected to do no better, in which case we have
equality q(nM)5q(M )n when n→`; this leads directly to
Eq. ~10!.

The value ofa depends on the instance studied. Howev
for our benchmarks, we are interested inrandomlygenerated
instances of the EA model. In that case, we find that
fluctuations ofa decrease asL increases, suggesting thata is
self-averaging. Table I shows the~mean! values ofa ob-
tained from our runs. It is not clear what the functiona(L)
is, but as a first guessa seems to grow exponentially withL
~at least in dimensions 3 and 4). Thespeedof the program
appears to be roughly linear inN and M ~for large values!.
On a 180-MHz PC running under Linux the coefficient
this law is 1.231024 sec that means that withM5a one
requires 24 sec to find the ground state of a 103 EA spin
glass and 135 sec for a 123 spin glass.

VI. DISCUSSION AND CONCLUSIONS

As with all known algorithms, it becomes increasing
difficult to find the true ground state as the number of sp
increases. What is important though is that larger syste
can be tackled@10# with our algorithm than with previous
methods@11,12#. Indeed, before the advent of GRA-type a
gorithms, it was not possible to solve reliably Gaussian
models of sizes beyond 83838. ~Let us note, however
that larger sizes can be tackled for the6J model; both
Pal @13# and Hartmann@14# quote results for sizes up t
14314314.! Interestingly, if one looks at currently compet
tive methods, they all rely on genetic algorithms; it th
seems essential to use multiple configurations~parents! to
find very low energy configurations in spin glasses. Our
proach takes advantage of this, while at the same time all
ing optimization on multiple scales; we believe this is t
source of our extra performance.

There is every reason to believe that our hierarchical

-

TABLE I. Value of a ~equation 10! for EA spin glasses in
dimensions 2, 3, and 4.L is the linear size of the system. Th
values marked with a~?! are unreliable because it was not cle
whether the ground states were found.

2D 3D 4D

L a L a L a

10 5.3 4 4.4 3 5.6
20 9.4 6 14 4 27
30 11 8 53 5 230
40 16 10 200 6 5500~?!

60 27 12 650
80 43 14 2500~?!
4-5
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J. HOUDAYER AND OLIVIER C. MARTIN PHYSICAL REVIEW E64 056704
proach can be useful for other optimization problems. N
only is the concept of a block spin natural, but also the us
recursion is not specific to spin glasses. In fact, we h
shown previously that a GRA-type approach is effective@6#
for the traveling salesman problem; applications to ot
problems should appear soon. Naturally, to get the best
sible performance, it is necessary to have a good local se
method and to define intelligently the renormalization tra
formation for the problem at hand. A certain amount
problem-specific fine tuning is possible here. In addition
would be useful to investigate improvements to our GR
that areproblem independent. Among these, we conside
particularly promising the possibility of selecting the pare
in a nonrandom fashion in the Next_Generation functi
and the maintaining of diversity of the population as t
generation number increases.
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APPENDIX A: LOCAL SEARCH

Our local search algorithm proceeds as follows.
~1! Choose a spin that will be the ‘‘seed’’ of the growin

cluster. This is done by taking any of the strictly unstab
spins of the current configuration; if there are none, choos
spin at random anywhere. Virtually flip this spin and mark
so it cannot be flipped again at any time during the cluste
growth. Compute the new gains of all the other spins of t
modified configuration.

~2! Add to the cluster the spin with the highest gain, be
positive or negative with the constraint that the cluster m
remain connected. Update the configuration and the g
and again mark this spin so it will not be considered
flipping during the growth of this cluster.

~3! Return to step 2 unless there are no more spins to
to the cluster or more than 20 spins have been added to
cluster since the greatest gain has been encountered.

~4! If the best cluster encountered during the growth p
cess has a strictly positive gain, flip it.

~5! Return to step 1 unless step 4 has already faile
times to find a cluster to flip, i.e., all clusters found h
negative gains.

At the end of this search, all spins have negative gains
we guarantee that the configuration is at least one-spin
optimal. One of the important features of this Kernigha
Lin-like algorithm is that the size of the cluster is not limite
~except byN). It can be very large in practice, especia
when the original configuration is random. In order to imp
ment this algorithm efficiently, we use adapted data str
tures. First, we dynamically maintain a list of the unsta
spins; this allows step 1 to be done in timeO(1). Second, we
use a dynamically maintained heap structure to find the n
best spin to add to the cluster; this allows step 2 to
achieved in timeO(ln K) whereK is the number of possibili-
05670
t
of
e

r
s-
ch
-
f
t

s
,

a
t
’s
s

t
t

ns
r

dd
he

-

3

o
ip
-

-
-

xt
e

ties for the spin to add. In practice the execution time for o
implementation is roughly linear inN.

APPENDIX B: THE NEXT_GENERATION FUNCTION

Here we give a more detailed view of this function. Fir
consider the choice ofk, the number of parents used in
renormalization~step 2 of the Next_Generation function!. In
our approach,k is not a fixed number, it is chosen dynam
cally for each renormalization in such a way that the ren
malized instance is at leastr times smaller than the origina
one ~the size of an instance is the number of its spins!. In
practice, we have setr 52.5. We proceed as follows. We firs
take a ‘‘large’’ number of putative parents~respecting the
rule that already used parents should not be used again
less no others are left!. For this large value ofk, the renor-
malized instance is quite big~the largerk, the larger the
renormalized instance!. Then we decreasek one unit at time
until we achieve the wanted size for the renormalized
stance~or until we reachk52). Naturally, only thek finally
selected parents are marked as ‘‘used’’ for the next iterat
It may happen that the renormalized instance is the sam
the original one~with very small systems, for example!. In
this case, one possibility is to simply leave the parents
changed and use them as children~and thus directly go from
step 2 to step 6!. During the recursive calls the system g
smaller and smaller; at some point, the local search is abl
find the ground state with high probability, so going
smaller sizes is useless~and uses CPU time!. To take advan-
tage of this, we put a barrier at the sizeN515: k is no longer
decreased if there are 15 or less spins~and if the renormal-
ized instance is smaller than the original one!.

A second issue concerns the size of the population
turned by Next_Generation: we want to ensure that the n
ber of configurations in the new generation is not grea
than the old one. As described so far, the population s
could grow because when producing the last children, p
ents that have been previously used can be used again~as in
Fig. 2! and thus some parents can produce more than
child. To prevent the population from growing, the simple
method is to remove as many configurations as necessa
step 8 of Next_Generation. We have choosen to do this
removing the worst configurations. Another possibili
would be to remove the most similar configurations~but this
is computationally more expensive!. Thus step 8 is replaced
by

(88) Remove the worst configurations from the new ge
eration so it is not larger than the old one. Return the res
ing population.

Now the Next_Generation functions properly but we ha
found it useful to introduce an algorithmic improvement a
sociated with preserving diversity. This is the third point w
wish to discuss. In a genetic algorithm, one evolves a po
lation and tries to improve it. One important characteristic
the diversity of the population: the more the configuratio
differ, the more new configurations one can create. At ste
of Next_Generation, where the local search is applied, so
thing bad can happen. Indeed, since for small enough
tems the local search is able to find the ground state w
4-6
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high probability, the~local search! optimization ofk different
configurations will leave us with just one child, thereby d
stroying diversity. To prevent this, we have changed ste
as follows:

(58) If more than one configuration is left after elimina
ing duplicates in step 4, proceed as in step 5. Else raise
unique configuration and apply local search. The children
the k best configurations out of this one and thek parents.

The last point that needs to be discussed concerns how
force Next_Generation to return a more optimized popu
tion than the one in its input, at least when this function
called from the main program. On the contrary, when
function is called from within the recursion, it would be
mistake to impose strict improvement as the population
in

.
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versity would diminish too quickly. Thus we need to giv
Next_Generation some additional information. To do th
we add a Boolean flag to its arguments that allows one
enforce or not improvement in the new generation. The fl
is set to true wheninitiating the recursion, and its value i
passed onward recursively. When the flag value is ‘‘false
Next_Generation performs the step 58 described above
When its value is ‘‘true,’’ Next_Generation performs inste
the original step 5. Furthermore, in the particular case wh
k52 and the renormalized instance is the same as the o
nal one, instead of returning both parents as children, o
the best one is used. Finally, the flag is switched from true
false as soon as step 4 of Next_Generation has improved
configurations, and that new value is passed on recursiv
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